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Abstract Extremal properties of the statistics of speckle pattern are studied in the context
of so-called “optically smoothed” light beams of laser-matter interaction. It is shown that the
asymptotic statistics of the highest intensity in a speckle pattern, which can be associated
with the most intense speckles, follows a Gumbel law, which is in agreement with numerical
simulations. It is found that the probability density function of the most intense speckle
peaks around the value corresponding to the logarithm of the number of speckles in the
considered volume times the average intensity value of the speckle pattern. This result is
of great interest for nonlinear processes, like instabilities, where extreme speckles play an
important role.
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1 Introduction

We study the extremal properties of so-called speckle patterns, namely small-scale structures
in a field intensity pattern that are characterized by a statistical distribution of the speckle
peak field intensities. We aim to describe the asymptotic behaviour of the maximum of the
intensity, that is, the statistical properties of the most intense speckles. These extremal prop-
erties, in particular the fluctuation of intensity maxima are an important issue for physics.
Many nonlinear mechanisms that involve speckle statistics can be sensitive to the speckle
distribution in the upper tail. The latter is for example of great importance in astrophysical
observations and in particular for laser matter interaction where instabilities in the beam
propagation, like filamentation, or scattering instabilities (see e.g. [1–4]) depend on intense
speckles. Due to their threshold-like onset, as a function of intensity, the development of
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such instabilities can yield diverging results, depending on the value of the most intense
speckle.

1.1 Physics Background

We focus in the following to the application of extremal properties of speckles for the case of
laser-matter interaction. In this context so-called laser “smoothing” techniques are applied
to overcome undesired large-scale inhomogeneities that may appear in the profile of the light
intensity of generic laser beams that exit from the amplification chain. The term “laser beam
smoothing” is commonly used when randomness is introduced in the phase front of high-
power laser beams. The result of such smoothing techniques is an overall “smoothness”
in the cross section of the beam on a large scale, say over many (�1) light wavelengths,
while, however, on a shorter spatial scale, say over a few laser wavelengths, the beam is
characterized by speckles. Due to the applied smoothing techniques, these speckles are co-
herent structures of homogeneous size with, of course, statistically distributed intensities.
The most frequently used method for spatial smoothing is the so-called ‘Random Phase
Plate’ (“RPP”) technique, which produces on the focal plane an intensity pattern consisting
of a large number of small-size “speckles”, also called ‘hot spots’, [5–8], see Figs. 1 and 2.

A typical speckle distribution function (DF) can be characterized by the “body”, namely
the interval where the probability density for speckles peaks, and by the “tail” of the most
intense speckles. The body of the distribution, located around the mean speckle intensity,
[9–11] is generally a well-known function, which can in the case of laser-smoothing easily
be deduced from the experimental technique applied [5–10, 12]. The “body” of the speckle
DF depends only very weakly on the quality of the light beam incident to the RPP, i.e.
whether the beam is close to an ideal beam (e.g. a plane wave) or whether imperfections in
the optical path and/or during the amplification deform the intensity profile and the wave
phase front. The “tail” of the distribution, however, contains only a small number of intense
speckles (for a finite-size speckle pattern), and hence, statistically, depends delicately on
the beam quality and on the information in the RPP mask. The tail may therefore exhibit
considerable fluctuations with respect to changes in the phase mask and/or in the optical
path.

The optical smoothing methods have been very popular and successful also in theoretical
modeling of laser-matter interaction [2, 3, 11, 13]: this is a consequence of the low sensi-
tivity of the body of the DF on details of the laser beams, which were often only poorly

Fig. 1 Illustrative scheme showing the Random Phase Plate mask in the “near field”, generating a speckle
pattern in the “far field”. The overall size of the mask (or of the focusing lense behind) determines the speckle
size, while the size of an individual phase element determines the size of the enveloping beam
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Fig. 2 Illustration of a speckle
pattern over the light propagation
direction z and one transverse
direction x⊥ (both in units of the
light wavelength λL = 2π/k0)
generated by a Random Phase
Plate, with 64 random phase
elements, κ = k0/8, rc = 2λL ,
�c = 25λL . The image shows
only a part of the pattern used for
the simulations

characterized in laser-matter interaction experiments. From this point of view, the inten-
sity profiles of RPP-smoothed ‘generic’ laser beams resemble (in the focal plane) surpris-
ingly well to speckle patterns originating from an ‘ideal’ beam [13–15]. This is the reason
why good agreement between theory and experimental results has been found using RPP-
smoothed beams where the physics was governed by contributions from speckles in the body
of the DF.

For processes, however, with critical dependence on high intensities [1, 4], potentially
situated in the tail of the speckle DF, theoretical modeling is often difficult because of the
incomplete information from experiments. A statistical treatment of the fluctuations in the
tail of the speckle DF is therefore necessary, and the study of extremal properties in the tail
of the DF is very valuable for such critical processes.

1.2 Extremal Properties

For this purpose we study the extremal properties of Gaussian random fields (and related
random fields) which have been investigated earlier in [16] and [17, 18], and have been,
more recently, in [11, 19, 20], applied to laser-matter (plasma) interaction.

The approach chosen for our work is motivated by the fact that the maximum of a speckle
field is expected to follow an extreme value distribution [21], in our case a Gumbel (or
double-exponential) law. Knowing this feature, one has to determine the particular form
of the Gumbel law for the case of weakly correlated structures like speckles, as done in
Sects. 2.3 and 2.4. Our approach is hence different from [11, 19, 20]. There are two further
aspects from which our approach is distinct from previous work, namely: (1) we study the
extremal properties of the intensity in speckle patterns by considering correlations via phases
(instead of considering real and imaginary parts of the fields), and (2) we use a discretised
spatial mesh to resolve the speckle pattern by going into the limit of high resolution, such
that the correlation inside speckles is an issue. The latter is different from Adler’s approach
[17] used in [11, 19, 20].

In the work presented here, we will hence elaborate how the most intense speckle in a
speckle pattern, which we call from now principal intensity maximum, follows a so-called
Gumbel (or double-exponential) law.

It is known [21–27] that the Gumbel law describes the statistics of the maximum
value Mn of a sequence {In} = I1, . . . , In of exponentially distributed intensity values,
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Mn ≡ max(I1, . . . , In). In the here considered case, this sequence corresponds to n points
taken from a mesh spanned over the speckle pattern.

Let us remark here a further aspect that distinguishes our approach from previous work:
we intend to determine the maximum of the speckle pattern, however, we need not require
that the values of the sequence {In} are itself maxima.

Generally, the value Mn is not identical with the principal intensity maximum, associated
with the most intense speckle, as long as the number of points n is small compared to the
number of points of a highly resolved mesh characterizing the speckle pattern. We will
show, however, that in the limit of high resolution, the statistics of the principal intensity
maximum follows a Gumbel law, although the condition for non-clustering (see later), due
to the coherent structure inside a spatially resolved individual speckle, is not fulfilled. This
result is underlined by numerical simulations demonstrating an excellent agreement with
the Gumbel law. Numerical simulations are based on a great number of realisations of an
algorithm generating a (highly resolved) speckle pattern corresponding to the one of a beam
generated by a Random Phase Plate.

The article is organized as follows: In Sect. 2, we first recall the notion of paraxial light
wave propagation in presence of beam smoothing techniques, which we develop for the
example of random phase elements in the phase front. The resulting correlation properties
of light fields are of importance to the application of the notions of extreme statistics that are
developed in the following section, together with a discussion on the convergence toward a
Gumbel law. In Sect. 3 we compare the theoretical results on the asymptotic behaviour of the
most intense speckle with numerical simulations. In Sect. 4 we evaluate the joint probability
densities of the random intensities (I1, . . . , In) by successively developing the covariance
matrix for point-to-point correlations on a regular, ordered mesh. This successive derivation
will be generalized in Sect. 7, after having proven that the joint distribution of the I1, . . . , In

has the required properties to establish the convergence of the distribution of the maximum
term of the sequence, Mn = max(I1, . . . , In). This is done in Sect. 5 by examining the decay
of the covariance matrix, reflecting the correlation of speckle light fields. Furthermore, in
Sect. 6, we discuss the behaviour of the “total intensity” of the light field with respect to the
maxima. We conclude in Sect. 8.

2 Model Definitions: Light Propagation and Extreme Statistics

2.1 Paraxial Propagation and Correlations

We recall in this section the properties of paraxial wave propagation which allows to evaluate
the correlation in the speckle field pattern for a light beam, generated with random phase
elements, in the vicinity of the focus of the overall light beam.

Light fields are solutions to the hyperbolic wave equation for the field E:

(∂2
ζ + ∂2

x − c−2∂2
t )E = 0 (1)

which in complex representation, has the form E(x, ζ, t) = a(x, ζ, t)eiψ for a solution prop-
agating in one direction. (For the moment and for simplicity we restrict ourselves to two
spatial dimensions, one parallel to the propagation axis ζ , the other, x, transverse to the
ζ -axis.) For a quasi-monochromatic source, the phase ψ can be written as ψ = ik0ζ − iωt

where the wave vector k0 denotes the component in the propagation direction and ω is the
corresponding frequency.
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For not strongly focused beams with the single principal propagation direction ζ , and the
transverse dimension x, (1) can be simplified by the so-called paraxial approximation for
the complex field a(x, ζ, t), which reads for a forward-going solution of the field E

[
2ik0

(
∂ζ + ω

c2k0
∂t

)
+ ∂2

x +
(

ω2

c2
− k2

0

)]
a = 0, (2)

where k0 and ω are chosen such that ω2/c2 − k2
0 ≡ 0, as in a homogeneous medium or the

vacuum.
The corresponding solution of a light field composed by speckles can be written as the

superposition of an ensemble of complex fields am, all with the same propagator eik0ζ−iωt ,
but with distinct values in the transverse direction. The phase is shifted in x and z direction
upon the individual initial phase ϕm, E(x, ζ, t) = ∑

m am exp{iψ + ikmx − ik2
mζ/2 + iϕm},

where km is now the wave vector component in the transverse direction, and k2
m/2k0 �

k0 −[k2
0 − k2

m]1/2 is the correction to the wave vector along the propagation axis (remind that
k2

m � k2
0 for validity of this paraxial approximation). For convenience, we restrict ourselves

to the stationary solution, such that the term ∂ζ + (ω/c2k0)∂t reduces to a simple derivative
in ζ (which is however equivalent to the solution in the frame ζ −cgt with the group velocity
cg ≡ c2k0/ω).

Furthermore, here and in the following, the x axis has been normalized to k−1
0 , the ζ axis

to k0/
√

2, such that k0x → x and k0ζ/
√

2 → z. The field describes, in paraxial approxima-
tion, the propagation from the so-called “near field”, where the speckle-generating “Random
Phase Plate” is situated,

∑
m ameiϕm , towards the “far field” A(x, z) in the focal plane, see

Fig. 1.
In the far field representation, the correlation function, E (A(x, z)A(x ′, z′)), between

fields in two points with coordinates (x, z) and (x ′, z′) is the essential quantity to evalu-
ate the covariance matrix C which allows to determine the joint probability density

p(A) = 1

(2π)n
√|C| exp

(
−1

2
(A − Ā)tC−1(A − Ā)

)
(3)

with the vector A = {A1,A2, . . . ,An} spanned by the components corresponding to the
fields in the points (x1, z1) . . . (xn, zn), and with Ā being the expectation value for the ran-
dom fields (which can be assumed to be zero in the current contexts Ā = 0 [9, 10, 16]). C is
a 2n × 2n matrix (see [11, 19, 20]) with the 2 × 2 block elements:

Crr(x, z, x ′, z′) = E (ReA(x, z)ReA(x ′, z′))Δc,

Cii(x, z, x ′, z′) = E (ImA(x, z) ImA(x ′, z′))Δc,

Cri(x, z, x ′, z′) = E (ReA(x, z) ImA(x ′, z′))Δc, and

Cir(x, z, x ′, z′) = E (ImA(x, z)ReA(x ′, z′))Δc,

with Δc = 1/E (|A(x, z)|2).
Later on, we will discuss the details of the joint probability density depending on the

correlation between the field values measured in different points. For this reason the complex
field quantity A(x, z) needs to be evaluated from the solution of the light propagation. After
propagation toward the “far field” in the focal volume, the superposition of the fields from
the phase plate elements yields A(x, z)=

∑
k ak exp{ikx − ik2z + iφk}, [11] where we can

assume that the phases φk are uniformly distributed on [−π,π].
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For the example of real-real correlations we obtain:

E (ReA(x, z)ReA(x ′, z′))

=
∫ π

−π

∑
k

∑
h

|ak||ah| cos(kx − k2z + φk) cos(hx ′ − h2z′ + φh)dφ

=
∑

k

|ak|2
[
cos(k(x − x ′)) cos(k2(z − z′)) + sin(k(x − x ′)) sin(k2(z − z′))

]
, (4)

and hence Δc = 1/(2
∑

k |ak|2).
Before we discuss the joint probability density for higher order correlations, let us just

recall that the marginal probability density for such fields is simply given by an exponential
law,

p(I) ∝ exp−λI, (5)

where I = (ReA(x, z))2 + (ImA(x, z))2 is the intensity of the light field in any point of the
field pattern.

In the following we shall principally refer to the case of the so-called ‘flat-top’ ampli-
tude model in the ‘near field’ with ak = const ≡ 1 within the interval |k| = [0, κ] for the
transverse wave number, and ak = 0 elsewhere. In polar coordinates this yields (see §4,
formula (18)) for the correlation:

E (ReA(x, z)ReA(x ′, z′)) =
∫ κ

0
ρ cos(ρ2z)J0(ρx)dρ. (6)

With the help of the latter expression one can compute the typical speckle size, which is a
measure of the spatial extension inside which field values are correlated. The importance of
the knowledge of the correlation function is two-fold: (i) on a “long” range the convergence
of the covariance matrix is necessary in order that the joint probability density, see (3),
exists; (ii) the “clustering” of points at which the intensity is evaluated inside a coherent
structure like a speckle, has an impact on the shape of the limit law.

The proof of the (i) ‘long’ range convergence is subject of Sects. 4–5, whereas the
(ii) ‘clustering’ inside the speckles, being an important notion for the shape of the distri-
bution function, is discussed in the following section.

By determining the typical speckle size via the correlation function, one can compute the
specific speckle volume with respect to the overall volume considered. In simulations, for in-
stance, the specific speckle volume depends on the spatial dimensions involved (2D or 3D),
as does the simulation volume. Therefore the ratio Volume/specific Volume determines the
number of speckles, nsp potentially to be observed. The latter will be shown to be an impor-
tant parameter in the following. Its value will be concretized in Sect. 3.2 on the simulation
results.

In this context it is important to note, that due to the paraxial approximation the cut-
off value of κ in the wave number transverse to the propagation direction must be small
(compared to the total wave vector) in order to maintain the validity of this approxima-
tion, namely to derive (2) from (1). In general, this cutoff is related to the so-called optical
‘f-number’, f #, such that κ ≡ 1/2f #. The paraxial approximation is valid for f # > 2, hence
the condition for the cutoff reads κ < 1/4.

Let us furthermore remark that the autocorrelation, E (AA∗) for the present case is a so-
called ‘flat top’ amplitude in the ‘near field’ ak = const within k = [0, κ], and it is just the
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result of the solution for the case of coherent field components (φk ≡ 0), namely

Ac(x, z) =
∫ κ

0
exp(−ik2z)k J0(kx)dk,

i.e. |Ac(x, z)| ≡ |Crr(x,0, z,0) + iCri(x,0, z,0)| or ReAc(x, z) ≡ E (A(x, z)A(x, z)∗).
In the general case, where ak(k) is the amplitude distribution of the uncorrelated and ak,c

of the coherent ‘near field’, the autocorrelation and the coherent field solution Ac are related
as [11],

ReAc(x, z) =
∫ ∞

0
ak,c(k) cos(k2z)k J0(kx)dk

≡
∫ ∞

0
|ak(k)|2 cos(k2z)k J0(kx)dk = E (A(x, z)A(x, z)∗), (7)

for |ak(k)| ≡ √|ak,c(k)| using E (A(x, z)A(x, z)∗) = 2E (ReA(x, z)ReA(x, z)). In pratice,

for the concrete and illustrative case of a Gaussian light “beam”, Ak,c ∝ e−k2w2
c , |ak| ∝ e−k2w2

the width in the uncorrelated case, w, relates to the width in the coherent case as w =
wc/

√
2. The value of w has its equivalence to the ‘flat-top’ case with (in dimensionless

units) the w = 2πf # = π/κ .

2.2 The Extreme Statistics and the Gumbel Law

We consider a speckle pattern of a laser light beam generated by a so-called Random Phase
Plate. The field intensity profile of this pattern can be considered as a set of a great number of
random values following a statistical distribution, the marginal probability density of which
is an exponential (5). For the extreme statistics of the speckle pattern we hence consider a
sequence of random measurements {In} ≡ I1, . . . , In, characterising the intensity in n points
of the speckle pattern.

We denote with Hn(x) the probability distribution P (Mn < x) for the maxima Mn =
max(I1, . . . , In) of a sequence of n points Hn, expressing namely the probability that the
value Mn is found below the value x. We wish to evaluate the asymptotic distribution H(x)

of the maxima Mn for n → ∞. To obtain a non-degenerate limit law of the distribution (not
reducing to values 0 or 1), one has to find a suitable transform Mn → (Mn − an)/bn for
the maximum values Mn with the rescaling coefficient bn and the shift an. The transform
allows to relate the distribution for the maximum Mn (finite n) to a limit law for n → ∞
as limn→∞ Hn(an + bnx) = H(x) with an adequate function H(x), provided that a choice
for an and bn exists. The latter express the probability limit limn→∞ P ((Mn − an)/bn < x),
which is, introducing un = an + bnx, equivalent to limn→∞ P (Mn < un).

For the distribution function F(un) (with the complementary distribution F̄ (un) ≡
1 − F(un)), describing the probability P (Ij < un) that a value Ij of the sequence {In} is
below un, the average number of exceedences of the level un is given by P ({In} > un) =
nF̄ (un). If and only if a choice for an and bn is possible such that the value of nF̄ (un)

stabilizes with n toward a positive real value τ , one can find a limit as

lim
n→∞nF̄ (un) = τ with τ ∈ (0,∞). (8)
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If the n values of {In} are independent, the probability that the maximum of all, Mn, stays
below un, is consequently given by

P (Mn < un) =
n∏

j=1

(
1 − F̄ (un)

) = (
1 − F̄ (un)

)n
(9)

which yields, using (8), that P (Mn < un) = (1− (τ/n)+o(1/n))n → exp(−τ) with o(1/n)

being a residual value decreasing faster than 1/n. The latter expresses the existence of a limit
law H for the maximum Mn, and it is equivalent to the existence of the average number of
exceedences in the sequence [21].

Now, for the exponential distribution being the representative distribution of the intensity
values in the speckle pattern, i.e. F(x) = 1 − e−λx (λ standing here for the average inten-
sity) and F̄ (x) = e−λx , we have F̄ (an + bnx) = exp(−λan) exp(−λbnx). Obviously, a good
choice for the coefficients is an = (1/λ) logn and bn = 1/λ yielding

nF̄ (un) = exp(−x) with un = x + logn

λ
, (10)

because P (Mn < un) reads now

P (Mn < un) =
(

1 − e−x

n

)n

→ exp(−e−x) with n → ∞. (11)

The limit law limn→∞ P (Mn < un), corresponding to the maxima of the sequence {In} of
intensities in the speckle pattern, is hence the Gumbel (or double exponential) law H(x) ≡
exp(−e−x) [21, 22].

In particular the coefficient an, involving the log of the number of points n, will be im-
portant in the following, in order to relate the Gumbel law to the distribution H for finite n.

In an asymptotic limit in n of the sequence {In} and for a highly resolved mesh, as dis-
cussed later, our derivation still holds. For this asymptotic case, the absence of independence
in the sequence I1, . . . , In is, however, an issue, but we can still have a limit theorem for the
distribution of the maximum: this is precised by two conditions, a first one, condition 1, on
the decay of long range correlations, and a second, condition 2, on the short range which
allows not too many joint exceedences of a given level [21, 24, 27, 28]. It has to be remarked
that, when both conditions are satisfied we have the same limit behaviour for Mn, with the
same un = (logn + x)/λ as in the independent case. When merely condition 1 is satisfied,
the situation is more involved, what is the subject of the following sections.

2.3 Case of a Sequence I1, . . . , In in Absence of Independence

Indeed, when I1, . . . , In are not independent, but have the same common distribution func-
tion F , we can still state a limit theorem, provided that the sequence of Ii ’s is not so far from
an independent sequence. This is what is expressed by conditions 1 and 2:

Condition 1 or “the joint distribution of {Ii} about mixing in the upper tail”, states that
the joint distribution function defined as Fi1...in (un) ≡ P (I1 < un, . . . , In < un) the distribu-
tion function of I1, . . . , In for that all values I1, . . . , In are below the value un satisfies the
following inequality:

|Fi1,...,ik ,j1,...,jt (u) − Fi1,...,ik (u) · Fj1,...,jt (u)| ≤ τ(s, u) (12)
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where for the sub-sequences Ii1 , . . . , Iik and Ij1 , . . . , Ijt with 1 < i1 < · · · < ik , ik + s < j1 <

· · · < jt (i.e. separated by s), the value of τ(s, u) is such that for un → ∞ there exists a
sequence sn → ∞ such that τ(sn, un) → 0 when n → ∞ [21, 24, 27].

We prove this condition in Appendix A. Condition 1 is a distributional mixing condition,
weaker than most classical forms of dependence. It applies on the ‘long range’, restricting
(long range) dependence, as it weakens range-m dependence (i.e. Ii and Ij independent for
|i − j | > m) in that the dependence is small but non-zero. It weakens mixing, as prescribes
the decay of correlations only on suitable sequences of values of the intensities going to
infinity. Hence, it is a condition of mixing adapted to the extreme value problems for which
only the upper tail of the distribution is relevant.

Condition 2 is the “non-clustering condition” and applies on the ‘short range’, restricting
the clustering of high level exceedences. It bounds the probability of more than one excee-
dence on a block of given length (N ), so that joint exceedences (in clusters) become more
and more unlikely.

Precisely, for n ≡ NM , let uNM be the NM-th element of the sequence un, split in M

packages of length N , of condition 1, N ∈ N
∗, M ∈ N

∗; then condition 2 reads:

lim sup
N→∞

N

N∑
j=2

P (I1 > uNM, Ij > uNM) = o

(
1

M

)
(13)

as M → ∞. This non-clustering property will be proven and discussed in Appendix B.
Indeed, for n = NM we obtain from (8) NP(Ii > uNM) → exp(−x)/M . This means

that by splitting a sequence of NM indexed intensity values in M packets of length N , for a
packet of N indexed intensity values there are, in average, O(1/M) exceedences of the level
uNM by a single Ii . Looking now for exceedences in pairs we find in case of an independent
sequence, that the number of pair exceedences is bounded by N

∑N

j=2 P (I1 > uNM, Ij >

uNM) → exp(−2x)/M2. In the lack of independence, we still wish to have a bound on
pair exceedences, in order to prove that the asymptotic behaviour of the maximum Mn is
the same as in the independent case. This is the meaning of expression (13) for M → ∞,
which “allows” more joint exceedences than in the independent case, but less than single
exceedences. This condition gives a threshold criterion when one passes from o(1/M) to
O(1/M), when expressed in terms of the development of the correlation coefficient around
the unity value, see Appendix B.

The “non-clustering” condition 2 is an important issue when taking limit of sequences
I1, . . . , In in a speckle pattern toward high resolution, where the ensemble of all n points
resolves even individual speckles, which are itself correlated. For this purpose, let us define
the number of ‘potential’ speckles in a volume by nsp. For a concrete definition let us refer
to Sects. 3 and 3.2 where we discuss the numerical simulations. High resolution in these
terms means that n � nsp, and, in practice, allows to converge toward the distribution of the
principal intensity maximum. Let us distinguish the cases

(i) for low resolution n < nsp, and
(ii) for high resolution n > 2nsp,

for which the splitting of n measured intensity values in M > 1 packages of length N can
be used.

2.4 Recentering of the Gumbel Distribution: Meaning of the Shift

Indeed, the approach consisting in choosing n points in a volume and then looking for the
statistics of the maximum value among these n points is a starting point to investigate the
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statistics of the global maximum in the box. For the sequence I1, . . . , In of intensities it is
known that, under conditions 1 and 2, the limit distribution is a Gumbel law with shift in
intensity controlled by the number of points n.

Under the case defined above (i) n < nsp, the shift in intensity of the Gumbel law is
strictly defined by (10), i.e. ∝ logn for n � nsp.

In case (ii) the non-clustering condition 2 is no longer fulfilled. At this point, as the
speckle has a coherent structure, it is clear that the shift in a Gumbel distribution (which
corresponds to the position in intensity of the maximum of the probability density) can no
longer be proportional to the total number of points, for instance, the number of grid points
resolved. Intuitively, it is clear that the result must be stable with respect to the resolution,
once the resolution is fine enough to resolve the structure of a speckle.

It is known from [27, 28] that under condition 1 only, any limit distribution of the max
of the sequence I1, . . . , IN has to be a Gumbel law

Hθ(x) = exp{−θ exp(−x)} with 0 < θ < 1. (14)

This means that condition 2, interpreted as a function of the development in the correlation
coefficient, can explain the change in the parameter θ from θ = 1 to θ < 1. This change
has a unique effect, the change of the shift from logn [case (i)] to log(n/θ) [case (ii)].
Indeed, Hθ(x) = H(cx + d) with c = 1 and d = log 1

θ
and P (Mn < an + bnx) → H(x)

with an = logn/λ and bn = 1/λ if

P (Mn < cn + dnx) = (
1 − e−λ(cn+dnx)

)n →n→∞ Hθ(x) (15)

with cn = log(n/θ)/λ and dn = 1/λ.
The criterion when θ has to be chosen different from unity, because condition 2 is not

satisfied, can be inferred by an analysis as performed in Appendix B. This criterion is ob-
tained by performing a development as a function of the correlation coefficient between two
points, and it shows nicely the tendency that θ decreases toward small positive values as the
pair correlations increase with the total number of points (in the same volume).

Condition 2 is indeed not satisfied inside a speckle structure, however, from the above
discussion, it is clear that still a Gumbel law following expression (14) can be used for the
extremal statistics we aim to describe. The value of θ acts as a shift in intensity ∝ log θ

which centers the Gumbel distribution different from the case (i).
For an illustration of the shift showing the change of the parameter θ we refer to Table 1

and to the section where we present the simulation results. If n < nsp, then θ = 1, i.e. the
number of points on which measures are taken is lower than nsp, so that the shift is logn

in the Gumbel distribution. As n approaches, n � nsp and exceeds nsp, the shift stabilizes

Table 1 Summary of θ values in Hθ , as well as of (1 + n
nsp

)θ , as a function of the dimension n of the

sequence I1, . . . , In . The values are taken on n equally distributed points in a speckle pattern resolved by
80384 grid points, and are based on 500 realisations of the speckle pattern. n varies between n = 100 and
n = 80000, close to the resolution of the grid. The number nsp of potential individual speckles in the volume is
nsp � 2500. The values of θ are deduced from numerical simulations by adjusting θ to yield the least-square
fit to the probability density dHθ (u)/du

n 100 200 400 800 1600 3200 6400 12800 25600 51200 80000

θ 0.99 0.99 0.85 0.68 0.57 0.43 0.28 0.17 0.10 0.05 0.03

(1 + n
nsp

)θ 1.03 1.08 0.98 0.89 0.94 0.99 1.00 1.07 1.09 1.12 1.12
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to attain an asymptotic value for n > nsp. In anticipation of our numerical results, we find
that θ = 1 in case (i) for n < nsp, while in case (ii) the behaviour of θ as a function of n

follows θnsp/n for large n/nsp ratios. As seen from Table 1, a good compromise to cover
both regimes, even with non-integer values of n/nsp, is θ(1 + n/nsp) � 1 � const.

Physically this stabilisation means that the maximum of the measured intensity values on
n points inside a speckle pattern cannot exceed the global maximum intensity value of the
considered speckle pattern.

3 Convergence Toward the Law of Gumbel: Comparison with Simulations

It is the subject of this section to relate the extremal properties discussed above to the simu-
lation results for a large number of realisations of speckle patterns, from which the statistics
of the principal maximum, having the highest local maximum, can be derived considering
the tail of the speckle distribution function. Let us remind that more than any other local
maximum in the speckle pattern, the intensity of the most intense speckle may show im-
portant fluctuations from one to another realisation of speckle patterns. Exchanging phase
plates in a RPP array particularly affects the principal intensity maximum, while the statis-
tical properties at lower field intensities remain almost unchanged. We furthermore recall
the properties of the joint distribution function to show that the probability distribution for
the principal maximum converges toward a Gumbel law. The conditions for the convergence
will be made explicit in Sect. 4 where the joint distribution function will be worked out for
a set of random intensities in our model.

3.1 Gumbel Law for the Principal Maximum

The theorem given by (15) yields for a sequence of intensity values I1, . . . , In with n � 1
(i.e. measured on a high density of points in a speckle pattern, such that individual speckles
are resolved), the probability

P (max(I1, . . . , In) < u) � Hθ(u − logn) = exp(−nθe−u) = exp(−θe−(u−logn)). (16)

As already mentioned earlier, see Sect. 2.2, the sequence I1, . . . , In for a given number n is
not intended to contain the global maximum of a speckle pattern. We will, however, show
in the following, that it is possible to derive the distribution of the principal maximum of a
speckle pattern from this theorem, namely by refining the density of points inside the speckle
pattern. Expressions (15) and (16) allow to find a Gumbel distribution corresponding to the
maximum of the sequence I1, . . . , In, namely Mn = max(I1, . . . , In), even if points around
this maximum are registered within the sequence. This allows to go toward the limit that
individual speckles are highly resolved, so that Mn is very close to the absolute maximum
of the speckle pattern considered. Refining the density of points again, say from n → Kn

on the same pattern, K > 1, will no more change the value such that |Mn − MKn|/Mn =
o(1/K). In this limit, we can state that the distribution of Mn, being a Gumbel distribution
and centered around u = (logn − log θ) in (16), converges toward the distribution of the
principal intensity maximum of the speckle pattern.

We have carefully verified the properties of the Gumbel distribution for a sequence
I1, . . . , In in speckle patterns numerically. By going toward the limit of very high resolu-
tion we can confirm the properties announced above.
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3.2 Simulation Results

In our simulations aiming to determine the distribution function of the principal intensity
maximum, the Random Phase Plate is characterized by

(1) the focusing aperture, determining the cutoff in the wave vector |km| < κ , and
(2) the number n# of phase plate elements, thus causing a subdivision of the wave vector

km in intervals with n# random phase values. See for illustration Figs. 1, 2.

The cutoff in km determines, like for an individual speckle (i.e. equivalent to a single
phase plate), the size of the speckle, namely rc = β⊥w = β⊥π/κ in width (being β⊥f #λL

in dimensional units) and �c = β‖k0r
2
c /2 in length (in dimensional units) [19, 20], with β⊥

and β‖, being constants of the order of unity, depending on the shape of the RPP, as defined
by the ak-values in (4) in Sect. 2.1. The number n# determines the potential overall size of
the beam, namely W = π/n#k0 � rc for its width for numerous phase plate elements. We
use the method of a usual RPP, where the phases jump randomly between 0 and π (but in
practice also random values can be used with the same properties). The potential number
of speckles in a given volume nsp is therefore given by α(L⊥/rc)

d⊥L‖/�c with d⊥ standing
for the dimensions considered in the direction perpendicular to the propagation, and with α

being a numerical factor of order unity, α � 2π for d⊥ = 1.
We first study the statistical properties of the sequence I1, . . . , In where the values are

taken at n arbitrarily chosen points on a mesh in space on which the speckle intensity pattern
was computed. The mesh resolution was extremely fine. In a first step, the number of points
n is small compared to the total number of mesh points Nm. This ensures that both conditions
1 and 2 are fulfilled, such that the Gumbel law must hold.

We show evidence for the validity of the Gumbel law by two sets of simulations:

(1) we keep the volume of the simulation box and the number of mesh points Nm constant,
and determine the distribution for sequences I1, . . . , In by increasing the number of
points n from n � Nm toward n ≤ Nm;

(2) we consider two simulation boxes, the second box having twice the volume of the first
one, in which we take a sequence I1, . . . , I2n twice as long compared to the one of the
first box. We keep, however, the same resolution such that N(2nd)

m = 2N(1st)
m .

The computed probability distributions clearly exhibit a shape of a Gumbel distribution.
Furthermore, increasing the number of points of the sequence, leads to a shift of the center of
the distribution in intensity, as suggests (16). Both sets of simulations confirm this feature,
(1) the first showing a shift by steps of log 2 in intensity when increasing the number of
points n each time by a factor of 2, namely n = 100, 200, 400, and 800, see Fig. 3. The
second set (2) shows similarly a shift of log 2, as expected, see Fig. 4.

Figure 3 shows the distributions for the maximum of the sequence Mn = max{I1, . . . , In}
from 500 realisations of a RPP-generated speckle pattern. By successively increasing n be-
yond n = 800 in set (1), one can observe a convergence of the distribution curves in Fig. 3:
although n is successively increased always by a factor of 2, the distance between the curves
in intensity is less than log 2 for n = 800, 1600 and 3200. For n = 6400, . . . , n = 51200, and
n = 80000 the curves almost merge toward a unique one, giving evidence for a convergence
toward a distribution that is independent of the increment in the number of points (up to
the total number of mesh points Nm = 80384 for the case shown). This is what we would
expect to happen: a convergence toward the distribution representing the principal intensity
maximum once the mesh is sufficiently fine to resolve individual speckles. Consequently,
taking always the maximum value in intensity of all the Nm points resolved of the overall
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Fig. 3 Probability distributions F(u) (multiplied by the number of realisations) for the maximum of the
sequence I1, . . . , In as a function of the intensity, normalized to the mean intensity of the pattern, from 500
realisations of a RPP-generated speckle pattern. Left subplot linear scale, right subplot logarithmic scale in
the number of counts (note that the value of F , usually normalized to unity for u → ∞ is multiplied by
purpose by the number of realisations). The dotted curves, from left to the right, show the distribution for
n = 100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600, 51200, and 80000 points, respectively. (The total
number of mesh points was, however, with Nm = 80384 considerably higher.) The solid lines correspond to
a Gumbel distributions corresponding to the least square fit to each curve. The potential number of speckles
in the volume is nsp � 2500

Fig. 4 Probability distributions
for the maximum of the sequence
I1, . . . , In as a function of the
normalized intensity u from 500
realisations of a RPP-generated
speckle pattern on a logarithmic
scale in the number of counts
(F is again multiplied by the
number of realisations). The
curves are distinguished by the
number of points n = 800 and
1600, but of twice the volume for
the latter. Both curves are hence
shifted by log 2 in intensity. (The
total number of mesh points was,
however, with Nm = 80384
considerably higher, and
nsp � 2500)

speckle pattern, over a large number of realisations, numerically yields the distribution of
the principal intensity maximum. For the example shown in Fig. 3 it is indistinguishable
from the curve for n = 80000.

The shape of all computed distributions is for each case very close to a Gumbel distribu-
tion. As evoked earlier when we have introduced the Gumbel law with the parameter θ , the
distribution for values n small such that the non-clustering criterion is fulfilled, i.e. θ ≡ 1,
the shift in intensity must follow logn, while a Gumbel law of the type Hθ holds if the
non-clustering criterion is not fulfilled, which is obviously the case for n >1600 in the sim-
ulations shown.

Let us comment on the convergence toward a unique distribution for a highly resolved
mesh: This convergence beyond a sufficiently good resolution is evident when considering
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that the speckle structure close to an intensity maximum is correlated and has a parabolic
shape around the maximum as a function of the distance (in x⊥ or z in our notation), namely
∝ Imax(1 − x2

⊥/r2
h) (and similarly in z) where rh is numerically close to rc

1 (and �c in z)
[19, 20]. The error in the intensity value, ΔI , with respect to Imax converges hence rapidly
with (Δx)2, and thus with 1/K2, for a resolution Δx = rc/K with K > 1 indicating the
number of grid points inside rc . For Δx > rc, however, the error goes in general with Δx.
The requirement that the error in the intensity value I is inferior to the value of the mean
intensity, 〈I 〉, of the overall field pattern is hence Δx⊥/rc < (I/〈I 〉)−1/2, which is Δx⊥ <

rc/3 for typical values. This criterion ensures that for Nm sufficiently high, the sequence
I1 . . . , In with n → Nm contains a value Mn very close to the value of the principal intensity
maximum. Of course, in case of a too coarse resolution the intensity peak value can be
missed, falsifying the scale of the distribution function aiming to represent the principal
intensity maximum.

3.2.1 Interpretation of the Table 1 and Discussion

From the different distributions for the various number of sequences I1, . . . , In for n =
100, . . . ,80000 we have determined a least square fit to both (i) a Gumbel distribution fol-
lowing Hθ(I) in (16) and (15) and (ii) the corresponding probability density dHθ(I )/dI ,
by seeking for the best value of θ fitting the numerical data. The corresponding values for θ

are summarized in Table 1 and in Fig. 5. We furthermore show the good agreement between
a Gumbel distribution and its probability density with the numerically computed values, see
Fig. 6. Let us comment here on the interpretation of Table 1. As it is explained in Sect. 2.4,
the non-clustering condition 2 is not fulfilled for a sufficiently high density of points in the
vicinity of the coherent structure of a speckle. We have shown that still a Gumbel distri-
bution of the form Hθ applies, where θ is decreasing toward smaller positive values with

Fig. 5 Value of the parameter θ determined as a function of the number of points n considered for the
sequence I1, . . . , In, multiplied by (1 + n/nsp) as in Table 1. The data are determined with the help of
a least square fit from two sets of numerical data, namely: between the numerical data for the probability
distribution, shown in Fig. 3, and the Gumbel distribution Hθ (u), and between the probability density derived
from the distribution values and dHθ (I )/dI , respectively. Both sets show very close results, yielding values
of (1 + n/nsp)θ close to unity, as expected

1For a ‘flat top’ RPP, e.g. the expectation value of the speckle radius is greater than the radius rh of the
parabolic behaviour around the intensity peak. The latter, however, has to be resolved to find Mn.
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Fig. 6 In Logarithmic scale:
Distribution F(u) and its
probability density p = dF/du

(both multiplied by the number
of 500 realisations) as a function
of the normalized intensity u for
the two extremes n = 100 and
n = 80000, the latter representing
the principal intensity maximum,
computed from 500 realisations
of an optically RPP-smoothed
light field; the solid curves show
the corresponding Gumbel
probability density following
pθ (u) of (18), centered around
the (normalized) intensity value
u ∼ lognsp � 7.8. The total
number of mesh points is 80384,
the number of potential speckles
in the volume is nsp ∼ 2500

increasing correlation. We observe in Table 1, that multiplying θ with the factor 1 + n/nsp,
which is � n/nsp � 1, results in an almost constant value very close to unity,

(1 + n/nsp)θ � const � 1. (17)

We can use this hence as a better approximation for θ than what we have obtained by an
approximate procedure in Appendix B.

Denoting n as the total number of observed points, we know that for the maximum of the
sequence Mn holds

P (Mn ≤ u) ∼ exp(−nθe−u) = exp(−e−(u−lognθ)),

which yields after a change of parameters P (Mn ≤ x/λ + log(n/θ)/λ) → exp(−θe−x) =
Hθ(x). By considering the dependence of θ on the ratio n/nsp, either using the first approx-
imation found in Appendix B, or better the expression (17) deduced from our simulations,

exp(−nθe−u) = exp{−e−u n nsp/(n + nsp)}.
This eventually means that the distribution of the principal intensity maximum is given by

a Gumbel law following Hθ with (17) resulting in the behaviour θ → nsp/n for n/nsp � 1,
so that P (Mn ≤ u) ∼ exp{−nθe−u} ∼ exp{−e−(u−lognsp)} and thus yielding the probability
density

pθ(u) = exp[−(u − lognsp) − e−(u−lognsp)]. (18)

Physically the shift which stabilises around a value lognsp independent of n has a clear
meaning. It depends on the number of speckles potentially found in a given volume. The
value around which the probability density is centered must be clearly superior to the av-
erage intensity of the field and of all speckles. The probability density pθ(I ) also rapidly
decreases in intensity with exp[−δI exp(−δI )], for δI < 0 (using δI = u− lnnsp), i.e. show-
ing an almost threshold-like onset “left” of the peak value of the pθ(u). In the other limit,
for δI > 0, for higher intensities, beyond its peak, the density pθ(u) decreases close to an
exponential tail, but slightly slower.
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The very good agreement of our simulations with (16) and (18), both on a linear as on
a logarithmic scale (!), makes it evident that for an adequate choice of the parameter θ ,
the Gumbel law is the natural description for the probability distribution of the principal
intensity maximum. Let us underline that the Gumbel law provides an exact expression of
an extremal law, and that the only approximation to be used in (16) and (18) comes from the
evaluation of the parameter θ . This value enters only as a logarithmic (i.e. weak) dependence
on the number of speckles nsp in the shift in intensity of the peak value of p(u), and it refers
to a concrete and intuitive physical meaning.

4 The Covariance Matrix and Correlations

In the previous sections, we have introduced the Gumbel law as limit law for the most intense
maximum of a speckle pattern. In order to prove the convergence toward a Gumbel law, we
proceed in determining the correlations in between points of the speckle pattern, which
eventually allows to determine the covariance matrix and the joint probability density.

Based on the paraxial propagation of light waves developed earlier, and on which the
demonstration of the Gumbel law was shown in the previous section, we proceed to derive
the correlations and henceforth the covariance matrix related to the probability density.

We transform the sum in (4) into an integral and change for x = (x1, x2) and k = (k1, k2)

into polar variables k1 = ρ cos θ k2 = ρ sin θ and k · x = x1ρ cos θ + x2ρ sin θ = ρ|x| cosα

for suitable α. For a ‘flat top’ distribution of the amplitudes ak , with ak = const ≡ 1 within
a radius ρ ≤ κ (and ak = 0 elsewhere) this results in

E (ReA(x, z)ReA(x ′, z′)) =
∫ κ

0
ρ cos(ρ2z)

∫ 2π

0
cos(ρx cosα)dαdρ

+
∫ κ

0
ρ sin(ρ2z)

∫ 2π

0
sin(ρx cosα)dαdρ

=
∫ κ

0
ρ cos(ρ2z)J0(ρx)dρ. (19)

Suppose that the speckle field is represented, in the far field, close to the light beam focus,
by the amplitudes {A1,A2, . . . ,An} at points 1 . . . n in the (x, z) plane, and consider the
values as a sequence of complex random variables, where Aj = (Ai

j ,A
r
j ) represents the

field at the point Pj ≡ (xj , zj ). The complex field values Ak relate to the intensity Ij at
Pj as follows

√
Ij cos(tj ) = Ar

j and
√

Ij sin(tj ) = Ai
j . Starting from the definition for the

correlation between the real parts of the field, E(ReA(x, z)ReA(x ′, z′)) = Crr(x, z, x ′, z′),
we proceed in the same way for the other correlations. Hence, we obtain for the joint density
of A = {A1,A2, . . . ,An}

p(A) = 1

(2π)n
√|C| exp

(
−1

2
(A − Ā)tC−1(A − Ā)

)
(20)

where C is the 2n × 2n covariance matrix (see [11, 19, 20]) with the 2 × 2 block elements:

Crr(x, z, x ′, z′) =
∫ κ

0
k cos(k2(z − z′))J0(k(x − x ′))dk = Cii(x, z, x ′, z′),

Cri(x, z, x ′, z′) = ∫ κ

0 k sin(k2(z′ − z))J0(k(x − x ′))dk = −Cir(x, z, x ′, z′).
(21)
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Note that An = (Ar
n,A

i
n) is called a circular complex random variable; in particular the

correlations between the points Pn and Pm obey Cri(Pn,Pm) = −Cir(Pn,Pm) and Cri =
−Cir = 0 for Pn = Pm.

For what follows, it is important to evaluate the decay of the correlations with increasing
distance between points. Let ξ = z − z′ and η = x − x ′ then the correlation coefficient Rij

between the points i = P (x, z) and j = P (x ′, z′) decreases as

Rij ≤ const ·
(

1

|ξ | + 1

|η| 3
2

)
.

Note that the step sizes required to evaluate the correlation between points Pn and Pm are
not necessarily small, such that the individual speckle size is resolved. The grid sizes chosen
to find the individual maxima of a speckle pattern, as done in Sect. 3 have been chosen much
finer than the distance between Pn and Pm. The correlation coefficient of the inverse matrix
decreases at the same speed (see below in Sect. 5). Indeed, the coefficients Rij measure
the correlation between two points i and j of the plane. A discretised evaluation of the
correlation (or covariance) matrix, however, requires an ordering in the distance between
the points. Hence, in a two-dimensional plane considered here, we have chosen to follow a
representative cut for the ordering in a single dimension, in each direction.

We will proceed in estimating the coefficients, with the x-section and the z-section of
the correlation matrix, representing the strength, or the decay of the correlation with respect
to the x direction or the z direction. Physically, this represents the directions along and
transverse the light wave propagation.

4.1 Correlations in the Simplified Case with Cri = −Cir = 0

We start by computing the joint density of the intensities in the—by a technical point of
view—simpler case where Cri = −Cir = 0, and we refer to a later section to consider the
general case, Cri = −Cir �= 0. In the following we discuss in detail the cases with n = 2 and
n = 3.

4.1.1 Example n = 2 (see [9])

Recall that Aj = (Ai
j ,A

r
j ) represents the field at the point Pj . Then, for n = 2 we compute

the joint density of the variables I1, I2

C =

⎛
⎜⎜⎜⎝

σ 2 0 μ δ

0 σ 2 −δ μ

μ −δ σ 2 0

δ μ 0 σ 2

⎞
⎟⎟⎟⎠ , (22)

with μ ≡ Crr = Cii for Pn �= Pm , σ 2 ≡ Crr for the autocorrelation (Pn = Pm), and δ ≡ Cri .
We consider now the simplified case of a real-valued matrix with δ = 0 together with σ 2 = 1,
yielding

p(I1, I2, t1, t2) = 1

2
√|C|4π2

exp

{ −1

2(1 − μ2)
(I1 + I2 − 2μ

√
I1I2 cos(t1 − t2))

}
(23)

and

p(I1, I2) = 1

2

1

2(1 − μ2)
exp

{ −1

2(1 − μ2)
(I1 + I2)

}
I0

(
μ

1 − μ2

√
I1I2

)
. (24)
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Let us remark that the marginal density of I1 is defined as

p(I1) = 1

2
exp

{
−1

2
I1

}
(25)

which is exponential with λ = 1/2 and σ 2 ≡ 1/2λ = 1.

4.1.2 Example n = 3 with Cri = −Cir = 0

For the case n = 3 the covariance matrix reads

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 R12 0 R13 0

0 1 0 R12 0 R13

R12 0 1 0 R23 0

0 R12 0 1 0 R23

R13 0 R23 0 1 0

0 R12 0 R13 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(26)

so that the joint density is

p(I1, I2, I3, t1, t2, t3)

= |J |
Δ(2π)3

e
−I1
Δ

(1−R2
23)e

−I2
Δ

(1−R2
13)e

−I3
Δ

(1−R2
12)

· e 2
Δ

(R12−R23R13)
√

I1I2 cos(t1−t2)e
2
Δ

(R13−R12R23)
√

I1I3 cos(t1−t3)e
2
Δ

(R23−R13R12)
√

I2I3 cos(t2−t3)

(27)

where Δ2 = (−1 + R2
12 + R2

13 + R2
23 − 2R12R13R23)

2 is the determinant of C and J = 1
8 the

Jacobian of the transformation from (Ar,Ai) to I .
To obtain the joint density of the intensities, we integrate on t and

p(I1, I2, I3)

= 2π
|J |

Δ(2π)3

∫ π

−π

∫ π

−π

dtdze
−I1
Δ

(1−R2
23)e

−I2
Δ

(1−R2
13)e

−I3
Δ

(1−R2
12)

· e 2
Δ (R12−R23R13)

√
I1I2 cos(t)e

2
Δ (R13−R12R23)

√
I1I3 cos(z)e

2
Δ (R23−R13R12)

√
I2I3 cos(z−t) (28)

since ez cos t = ∑∞
k=0 εk Ik(z) cos kt where εk = 1 if k = 0 and εk = 2 otherwise, we obtain

p(I1, I2, I3) = 1

2Δ
exp

{−I1

Δ
(1 − R2

23)

}
exp

{−I2

Δ
(1 − R2

13)

}
exp

{−I3

Δ
(1 − R2

12)

}

·
[ ∑

k=0,1,...

εk Ik

(
− 2

Δ
(R12 − R23R13)

√
I1I2

)
Ik

(
− 2

Δ
(R13 − R12R23)

√
I1I3

)

· Ik

(
− 2

Δ
(R23 − R13R12)

√
I2I3

)]
. (29)

Let us remark that the marginal densities Ij do not depend on j : p(I1) = p(I2) = p(I3)

and p(I1) = λe−λI1 with λ = 1/2, as expected, as these densities are derived from Gaussian
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ones. Moreover

p(I1, I3) = 1

2

1

2(1 − R13)2
e

− 1
(1−R2

13)
(I1+I3)

I0

(
R13

(1 − R2
13)

√
I1I3

)
(30)

that is, the joint density of Ii and Ij , that does, as expected, not depend on i and j . Let
A = {Ar

1,A
i
1A

r
2,A

i
2, . . . ,A

r
n,A

i
n} then

p(A) = e− 1
2 (A)t C−1(A)

(2π)n
√|C| (31)

via the change of variables Ar
j = √

Ij cos tj , Ai
j = √

Ij sin tj , and if Ĩ = {√I1 cos t1,√
I1 sin t1, . . . ,

√
In cos tn,

√
In sin tn} then

p(I1, t1, I2, t2, . . . , In, tn) = |J |
(2π)n

√|C|e
− 1

2 (Ĩ )t C−1(Ĩ ) (32)

where |J | is the Jacobian of the transformation from (Ar,Ai) to I, t . Therefore

p(I1, t1, I2, t2, . . . , In, tn) = e− 1
2

∑n
i=1 λi Ii e

2
∑

i<j μij

√
Ii Ij cos(ti−tj )

(4π)n
√|C|

where λiIi are the diagonal terms of Ĩ tC−1Ĩ and μij

√
IiIj cos(ti − tj ) are the n(n−1)

2 remain-
ing terms. Integrating on t1, t2, . . . and expanding ez cos t = ∑∞

k=0 εk Ik(z) cos kt we obtain

p(I1, I2, . . . , In) = 1

(4π)n
√|C|e

− 1
2

∑n
i=1 λi Ii

∫ π

−π

. . .

∫ π

−π

dt1 . . . dtn

·
∑

k1,...,kN

εk1 . . . εkN
Ik1(2μ12

√
I1I2) cos k1(t1 − t2) . . .

· IkN
(2μn−1,n

√
In−1In) cos kN(tn−1 − tn) (33)

where N = n(n−1)

2 . The integrals∫ π

−π

. . .

∫ π

−π

dt1 . . . dtn cos k1(t1 − t2) . . . cos kN(tn−1 − tn),

via the change of variables t1 − t2 = x1, . . . , t1 − tn = xn, become
∫ π

−π

. . .

∫ π

−π

dt1 . . . dtn cos k1x1 . . . cos knxn . . . coskN(xn−1 − xn).

For n = 3 only k1 = k2 = k3 (ki ≥ 0) result in a non-zero integral. For n ≥ 4, other combi-
nations are possible, and we note these conditions by *, so that, in conclusion one obtains

p(I1, I2, . . . , In)

= 1

(4π)n
√|C|e

− 1
2

∑n
i=1 λi Ii I0(μ12

√
I1I2) . . . I0(μn−1,n

√
In−1In)(2π)n

+ (π)n
∑

k1,...,kN ,∗,ki �=0

Ik1(2μ12

√
IiIj ) . . . IkN

(2μn−1,n

√
In−1In). (34)
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5 Decay of the Correlations

A numerical evaluation of the decrease of the off-diagonal terms of the inverse C−1 of the
correlation matrix shows the decay 1/(|i − j |)β with β = 1 in the z direction and β = 3/2
in the x direction, see Fig. 7. This is expected, as it is known [29] that if the elements Ci,2j−i

decrease as 1/(|i − j |)α (for α > 1) then the elements of the inverse matrix decrease at
the same speed. However, the numerical inversion is delicate, as small eigenvalues—which
turn out to be the large ones in the inverse matrix—dominate the behaviour of the center of
the inverse matrix, the center being the near-diagonal elements. The behaviour of the off-
diagonal elements, which is of interest, is still dominated by the good eigenvalues, which
gives the expected decay. This numerical investigation has the following theoretical coun-
terpart: [30, 31] it is well-known from signal processing that the numerical inversion of co-
variance matrices, necessary to determine the probability density function, causes currently
problems. A way to avoid these difficulties is to rely on the fact that properties of Toeplitz
matrices can be applied. The inversion of such matrices has been abundantly investigated
and common problems of matrix inversion can be avoided. Recall that the correlation ma-
trix is

∫ κ

0 k cos(k2z)J0(kx)dk. We shall deal with two Toeplitz hermitian matrices T (x, z0)

and T (x0, z) which are the sections of the correlation matrix C in x and in z-direction, where

T (x, z) =
∫ κ

0
k cos(k2z)J0(kx)dk (35)

and their associated spectra

Sx(λ) =
∫ ∞

0
T (x, z0)e

−iλxdx and Sz(λ) =
∫ ∞

−∞
T (x0, z)e

−iλzdz, (36)

respectively. First considering T (x, z0 = 0), we have for the correlation and its transform:

T (x,0) = κ
J1(κx)

x
, Sx(λ) =

∫ ∞

−∞
e−iλxκ

J1(κx)

x
dx = κ

√
1 − (λ/κ)2 (37)

for |λ| ≤ κ . Following Grenander and Szegö [30], we start with the function Sx(λ) =
κ
√

1 − (λ/κ)2 defined on the interval [−κ, κ] and the Toeplitz matrix associated to S, e.g.

(Mn)μν =
∫ κ

−κ

√
1 − (x/κ)2ei(ν−μ)xdx = π J1(κ(ν − μ)

(ν − μ)
.

Fig. 7 Decrease of correlation in x (left) and z (right). Each dot indicates the value of an element of the
correlation matrix with respect to the distance between the two points for which the correlation has been
computed. Solid line: scaling law with x−3/2, and z−1, respectively
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We take (see [30]) the following sequence approximating the spectrum S, with a Cesaro sum
applying a linear decrease 1 − |n|/p:

Sp,x(λ) =
p∑

n=−p

(1 − |n|/p)cne
−inλ (38)

with Fourier coefficients cn = J1(κn)/2n and c0 = κ/4. We define as in [30] the diagonal
matrix (Dn)ν ν = Sp,x(2πν/n) and the matrix

(Ln)ν μ = 1

n

n∑
m=1

Sp,x(2πm/n)eim
(ν−μ)

n . (39)

The latter, Ln, is a circulant matrix whose eigenvalues are Sp,x(2πν/n) and we know that
for a circulant matrix associated to S, (Ln(S))−1 = Ln(1/S) so that [31]

(Ln)
−1
ν μ = 1

n

n∑
m=1

eim(ν−μ)/n

Sp,x(2πm/n)
. (40)

Ln is asymptotically equivalent to the Toeplitz matrix Mn [30, 31].
This choice of approximating sequences Sp,x (convolutions) allows to handle the case of

a convergent, but not absolutely convergent Fourier series [30]. This is indeed the case in the
z direction, when α = 1. Moreover, in the discretisation of Sp , we keep away from generate
large eigenvalues for L−1

n so that L−1
n is asymptotically equivalent to the inverse M−1

n of the
Toeplitz matrix Mn [31].

Taking Sp,x as in (38), with the coefficients cn, we have for T −1(x, s), s = μ − ν:

T −1(x, s) ∼ 1

n

n∑
m=1

eim s/n

Sp,x(2πm/n)
, (41)

which gives, for large n and s values (s ≤ n) the decay of the off-diagonal elements of the
inverse matrix.

We have examined the decrease numerically starting from a covariance matrix and evalu-
ated the decrease in the inverse matrix by applying the procedure shown above, using Cesaro
sums. The numerical evaluation of the above-mentioned expression confirms indeed the de-
cay as ∼ s−3/2, see Fig. 8 (left). In the same way, for T (x0 = 0, z) in the z section, we have

Fig. 8 Decrease of correlation in x (left) and in z (right) in the inverse Matrix, reconstructed via a Toeplitz
Matrix, solid line: scaling law with x−3/2 and with z−1, respectively
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for x0 = 0 the correlation and its transform given by:

T (0, z) =
{

sin(zκ2)

z
if z �= 0,

κ2

2 otherwise,
(42)

Sz(λ) = 2
∫ ∞

0

sin(xκ2)

x
cos(λx)dx =

{
1 if |λ| < κ2,

0 if |λ| > κ2.
(43)

We repeat the same approximating procedure as above, (38)–(41), taking as the sequence
approximating the spectrum Sp,z(λ) = ∑p

n=−p(1 − |n|/p)cn exp{−inλ}, where the Fourier
coefficients are given by cn = sin(κ2n)/πn and c0 = κ2/π .

We define as in [30] the diagonal matrix (Dn)ν ν = Sp,z(2πν/n) and the matrix (Ln)ν μ =
(1/n)

∑n

m=1 Sp,z(2πm/n) exp{im(ν − μ)/n}, where, again, Ln is a circulant matrix whose
eigenvalues are Sp,z(2πν/n), for which know that for the circulant matrix associated with S

(Ln(S))−1 = Ln(1/S) so that [31] (Ln)
−1
ν,μ = (1/n)

∑n

m=1 exp{im(ν − μ)/n}/Sp,z(2πm/n).
We find for the decay of the inverse Toeplitz Matrix, with ν − μ = s,

T −1(s, z) ∼ 1

n

n∑
m=1

eim s/n

Sp,z(2πm/n)
. (44)

We have again examined the decrease numerically and evaluated it by applying the proce-
dure equivalent to what was shown above. The numerical evaluation of the above expression
gives indeed a decay ∼s−1, see Fig. 8 (right).

6 The Total Intensity

We discuss the behaviour of the total intensity Sn = I1 + · · · + In of a speckle pattern
evaluated at n points. This is of importance to estimate the weight of the maximum of
the sequence, Mn, with respect of the ensemble. As the total intensity Sn is the sum of n

weakly correlated variables Ij , j = 1, . . . , n, all following the exponential law with parame-
ter λ = 1/2, let us consider Sn = I1 + · · · + In and note that the sequence I1, . . . , In satisfies
the following mixing property:

For any sequence of indices 1 < i1 < · · · < ik , ik + n < j1 < · · · < jt , for any sequence
of real values ui1 , . . . , uik , uj1 , . . . , ujt it holds that

|P (Ii1 < ui1 , . . . , Iik < uik , Ij1 < uj1 , . . . , Ijt < ujt )

− P (Ii1 < ui1 , . . . , Iik < uik )P (Ij1 < uj1 , . . . , Ijt < ujt )| ≤ α(n), (45)

where α(n) → 0 as n → ∞: the coefficients α(n) decrease to 0 as μ2
1n, that is as (1/n)a

(a = 2), see Sect. 5. For a proof, see Appendix C.
Moreover, the sequence {Ii}i=1,2,... of weakly correlated exponential variables of para-

meter λ = 1/2 satisfies the condition on the upper tail quantile function Q(u)
.=

inf{t : P (I > t) ≤ u} = inf{t : ∫ ∞
t

λe−λtdt ≤ u} = −1
λ

logu:

∞∑
n=1

∫ α(n)

0
Q2(u)du < ∞.
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Furthermore, we know that (see [32]), limn→∞ Var(Sn)/n = σ 2 ∈ R
+∗ where Var(Sn) denotes

the variance of the random variable Sn. We can apply the Central Limit Theorem (CLT)
saying that the law L

L
(

I1 + · · · + In − E(Sn)

σ
√

n

)
→ N (0,1),

where E( ) and N stand for the expectation value and the normal (Gaussian) distribution,
respectively, and, here, E(Sn) = nE(I) = n/λ the expectation value of the total intensity.
Note that it can be directly checked that (1/n)Var(I1 +· · ·+In) converges toward a finite and
positive quantity. Computing the variance Var(Sn) = ∑

i Var(Ii) + 2
∑

1≤i<j≤n Cov(IiIj )

where Var(Ij ) = 1/λ2 ≡ 4 with λ = 1/2, and the covariances are Cov(IiIj ) = E(IiIj ) −
E(Ii)E(Ij ) yields

E(IiIj ) =
∫ ∞

0

∫ ∞

0

1

2

IiIj

2(1 − μ2
ij )

e

−1
2

(Ii+Ij )

1−μ2
ij I0(μij

√
I1Ij )dIidIj = 4(1 + μ2

ij ) (46)

having used 2
∫ ∞

0 ay exp(−ay)
∫ ∞

0 x3 exp(−ax2)I0(b
√

y x)dxdy = 16a(4a2 + b2)/

(4a2 − b2)3, with a = 1/2(1 − μ2
ij ) and b = μij . Hence,

Var(Sn) = n
1

λ2
+ 2

∑
1≤i<j≤n

(
E(IiIj ) − 1

λ2

)

= n

λ2
+ 2

∑
1≤i<j≤n

(
4(1 + μ2

ij ) − 1

λ2

)
= n

λ2
+ 8

∑
1≤i<j≤n

μ2
ij . (47)

To show the convergence of the last series, recall that correlations decrease with power laws,
μij ∼ |i − j |−D with D = 1 and D = 3/2, respectively, if |i − j | = k is large, say k ≥ k0.
Hence the variance can be estimated for λ = 1/2 by

Var(Sn) ∼ 4n + 8

(
c(n) +

n∑
k=k0

(n − k)

k2D

)
,

where
∑n

k=k0

(n−k)

k2 grows, for D = 1 as n − logn − 1 and for D = 3/2 as
∑n

k=k0

(n−k)

k3 as
n/2 + 1/2n− 1, and c(n) ≤ √

n, showing the convergence toward a finite and positive limit,
denoted by σ 2, of (1/n)Var(I1 + · · · + In) when n → ∞.

Observe that (see [9, 10]) the total intensity Sn = I1 + · · · + In = ∑
j |Aj |2 =∑

j (|A′
j |)2 = I ′

1 +· · ·+I ′
n, is invariant with respect to the transformation where the variables

A′ = PA are the transformed by an unitary matrix P variables. The total intensity is hence
the same in the original and transformed basis. Hence we can describe Sn as the sum of n

independent variables I ′
j , where I ′

j follows the exponential law:

p(I ′
j ) = λje

−λj I ′
j χ[0,∞](I ′

j ),

with χ[0,∞](I ′
j ) = 1 for I ′

j ≥ 0, and 0 elsewhere, and where λj is the inverse of the j -th
eigenvalue of the correlation matrix. Since the I ′

k are uncorrelated, the characteristic function
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of the total intensity Sn is: φSn(t) = ∏n

k=1
λk

λk−it
and its Fourier transform

pSn(x) =
n∑

k=1

e−xλkλ1 · · ·λn∏
p �=k(λp − λk)

(48)

is the probability density function of Sn (as all λk are different from each other) [9, 10].
For Sn = I1 + · · · + In = I ′

1 + · · · + I ′
n, and for small n, the total intensity Sn as sum of

exponential variables, is dominated by the term associated to the smallest λk (see Fig. 9).
The contribution of the maximum term corresponding to the sequence (Ii)i∈N , repre-

sented by the quantity Mn, is asymptotically negligible with respect to the total inten-
sity Sn:

Mn

Sn

→ 0 (49)

due to its exponential distribution [21]. Furthermore, as the Ii are weakly correlated and Sn

is asymptotically Gaussian, the individual terms will be asymptotically negligible and the
extreme terms play no role in the limit distribution, that is to say we expect the asymptotic
independence of Sn and Mn [33]. In Fig. 10 is shown the behaviour of Mn/Sn confirm-
ing that the contribution of the maximum term to the sum, for the case discussed here, is
asymptotically negligible.

Fig. 9 Probability density
function of total intensity for a
sum of a speckle pattern
discretized over 12×12 points,
retaining 2, 5, 8, and 12 eigen
values (from the left to the right).
With increasing number of eigen
values, the shape approaches a
normal (Gaussian) law

Fig. 10 Ratio relating the sum over intensity extrema Mn to the sum of all field values Sn computed succes-
sively from n from 1 to all 200, clearly showing the decrease of Sn/Mn ∼ 1/n → 0 for n → ∞. Left: linear
scale, right: log-log scale
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7 The General Model

In the previous sections we have considered the case Cir = −Cri = 0. For completeness,
we consider now the general case Cir = −Cri �= 0 for a circular complex random variable
(see [9, 10]). The proofs are technically heavier but it is important to note that it follows the
same lines that in the simpler Cir = −Cri = 0. We proceed as in Sect. 4.1

7.1 The Model for n = 2

C =
⎛
⎜⎝

σ 2 0 μ δ

0 σ 2 −δ μ

μ −δ σ 2 0
δ μ 0 σ 2

⎞
⎟⎠ . (50)

With σ 2 = 1, one obtains DetC = (−1 + δ2 + μ2)2, and for the joint density

p(I1, I2, t1, t2) = 1

2π(−1 + δ2 + μ2)
e

−1
2

1
1−δ2−μ2 (I1+I2−2μ

√
I1I2 cos(t1−t2)+2δ

√
I1I2 sin(t1−t2))

so that the joint density of the intensities only yields

p(I1, I2) = 4π

(−1 + δ2 + μ2)
e

−1
2

1
1−δ2−μ2 (I1+I2)I0

( √
μ2 + δ2

(−1 + δ2 + μ2)
2
√

I1I2

)
.

Note that as μ,δ → 0 the joint density tends towards the product of densities.

7.2 The Model for n = 3

Setting σ 2 = 1, and observing that the terms containing a sinus vanish (for n = 3) we have
the joint density:

p(I1, I2, I3, t1, t2, t3) = e
−1
2 (δ1I1+δ2I2+δ3I3)

(4π)3
√

det |C| eμ12 cos(t1−t2)+μ13 cos(t1−t3)+μ23 cos(t2−t3)

and proceeding as above (see §1.2) the joint density of the intensities:

p(I1, I2, I3) = e− 1
2 (δ1I1+δ2I2+δ3I3)

(4π)3
√

det |C|
(

8π3
∑

k

εk Ik(μ12

√
I1I2)Ik(μ13

√
I1I3)Ik(μ23

√
I2I3)

)
.

(51)
The latter is easy to generalise to n variables.

7.3 The General Case n

The covariance matrix has the form

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 R12 L12 R13 L13 . . .

0 1 −L12 R12 −L13 R13 . . .

R12 −L12 1 0 R23 L23 . . .

L12 R12 0 1 −L23 R23 . . .

R13 −L13 R23 −L23 1 0

L13 R13 L23 R23 0 1 . . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (52)
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Hence, proceeding as above, we find

p(I1, t1, I2, t2, . . . , In, tn) = e− 1
2

∑n
i=1 λi Ii

(4π)n
√|C| e

2
∑

i<j μij

√
Ii Ij cos(ti−tj )

e
2
∑

i<j λij

√
Ii Ij sin(ti−tj ) (53)

where μij are the coefficients of C−1 correlating real to real or complex to complex, and
λij those relating complex to real (or real to complex). These coefficients decay to zero
when i − j is large at a rate which can be inferred by that of the off-diagonal coefficients of
the matrix C, as above. By using the expansions ez cos t = ∑∞

k=0 εk Ik(z) cos(kt) and ez sin t =
I0(z) + 2

∑∞
k=0(−1)k I2k+1(z) sin((2k + 1)t) + 2

∑∞
k=0(−1)k I2k(z) cos(2kt) we obtain

p(I1, I2, . . . , In)

= e− 1
2

∑n
i=1 λi Ii

(4π)n
√|C|

∫ π

−π

. . .

∫ π

−π

dt1 . . . dtn

·
[ ∑

k1,...,kN

εk1 . . . εkN
Ik1(r12

√
I1I2) . . . IkN

(rn−1,n

√
In−1In)

· cos(k1(t1 − t2)) . . . cos(kn(t1 − tn)) . . . cos(kN(tn − tn−1))

]

·
[∏

i �=j

I0(λij

√
IiIj ) + 2

∑
ki

(−1)ki I2Ki+1(λij

√
IiIj ) sin(2Ki + 1)(ti − tj )

+ 2
∑
ki

(−1)ki I2Ki
(λij

√
IiIj ) cos(2Ki)(ti − tj )

]
(54)

hence

p(I1, I2, . . . , In)

= e− 1
2

∑n
i=1 λi Ii

(4π)n
√|C|

[
(I0(r12

√
I1I2) . . .

· I0(rn−1,n

√
In−1In)) · (I0(l12

√
I1I2) . . . I0(ln−1,n

√
In−1In)) +

∑∏]
. (55)

As μij and λij go to zero, the terms
∑∏

go to zero faster than the product of the zero order
modified Bessel function I0’s. The proof proceeds as shown above.

8 Conclusions and Discussion

We have shown that the extremal properties of the speckle statistics yield a Gumbel law for
the probability distribution of the maximum of a sequence of n intensity values measured
inside a speckle pattern. The probability for the maximum of this sequence of intensity
values (normalized to the mean intensity), given by

P (max(I1, . . . , In < u) = Hθ(u − logn) = exp−θe−(u−logn)

is centered around the (normalized) intensity u = logn/θ (equivalent to u = logn for θ ≡ 1
when all points are uncorrelated).
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For the limit of a highly resolved speckle pattern, where the number of points resolved n

is much higher than the number of potential speckles nsp in the pattern, n � nsp, the maxi-
mum of the measured values follows as well a Gumbel law with a θ -value θ � nsp/n � 1.
This law asymptotically, for n/nsp � 1, converges toward a distribution centered around the
(normalized) intensity u � lognsp, and being equivalent to the distribution for the principal
intensity maximum of the speckle pattern, the probability density of which is given by (18).
The latter convergence is due to the presence of clusters inside the coherent structure of a
speckle, which yields an upper limit for the number of independent points n on which the
field pattern can be measured, given by the number of speckles nsp in the considered volume.
The fact that the distributions of sequences with an increasing number of points converge
to a unique distribution once n is much higher than the number of potential speckles in the
pattern, demonstrates the robustness of our finding.

Our work is distinct form previous work [11, 19, 20] in that we use an approach starting
from the Gumbel law as the extremal value distribution. The form of the extremal law in
our approach is exact. The only approximation made was in the analytical expression for the
parameter θ , developed up to the 2nd order in the correlations of clustering (Appendix B.1);
in parallel to this, we have found an approximate expression for θ derived from numerical
simulations. It is important to mention that both the analytic expression and the numerically
found expression recover the essential scaling of θ on the characteristic speckle sizes, de-
termining eventually the number of speckles nsp in the pattern. Numerical constants which
may change along with the precision of the development, are of minor importance due to
the logarithmic dependence of the distribution on nsp.

Our findings are of essential importance for processes where the most intense speckles
contribute considerably (see e.g. [4]) or even critically to a process (see e.g. [1, 34]), mostly
of nonlinear nature, such as signal amplification as a function of the light intensity.

It is also of interest if one tries to model a speckle distribution with realisations of a
relatively small number of speckles. As an example we mention the often used restriction
to two spatial (2D) dimensions instead of three dimensions (3D). A 2D case represents
obviously only one slice of a 3D case: supposing that the third dimension of the speckle
pattern has an extension of D and a is the radius of a single speckle, a 3D case would
correspond to a number of D/2a realisations, where usually D/2a � 1 holds.

Our findings allow to determine the error in the expected observations of the peak inten-
sity of the speckle pattern. The interval of intensity values in which the most intense speckles
will occur can be characterized by lower and an upper bound in intensity. It is important to
note that the intensity value associated with the lower bound characterizing the Gumbel dis-
tribution, see (18), exhibits a sharp onset as a function of the intensity, while the upper tail
of the distribution decreases quite smoothly with intensity. The latter is of importance in
particular for nonlinear processes, as amplification of parametric instabilities in laser plas-
mas, because an amplification growing exponentially with the intensity can overcome the
decrease of the probability density in the intensity tail. The weight of the intense speckles
(not only of the most intense one), which is negligible when compared to the total intensity,
see Sect. 6, can therefore have considerable importance, as e.g. underlined in [1, 34].

The feature of a sharp onset for the lower bound, of the interval in which the most in-
tense speckle (the principal intensity maximum) can be found, is directly connected with the
order statistics of the next speckle intensity maxima in hierarchy. It is also characteristic for
the considered case, namely a marginal probability density for speckle patterns that can be
described by an exponential law [see (25)], ∝ exp(−λu), with a single characteristic expo-
nent λ standing for the average intensity of the speckle pattern. The latter is not the case
for composed probability densities that cannot be characterized by a single λ value. These
subjects are actually work in progress.
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Appendix A: Proof of Condition 1

First we prove that the d.f. F with density p is mixing in the upper tail, that is, it satisfies
the following:

|P (Ii1 < u, . . . , Iik < u, Ij1 < u, . . . , Ijt < u)

− P (Ii1 < u, . . . , Iik < u)P (Ij1 < u, . . . , Ijt < u)| ≤ τ(s, u)

where 1 < i1 < · · · < ik , ik + s < j1 < · · · < jt and τ(s, u) is non increasing in u and such
that for at least a sequence un → ∞ there exists a sequence sn → ∞ such that τ(sn, un) → 0
when n → ∞. We suppose that the correlations decrease with the mutual distance like μij ≤
|i − j |−α if |i − j | > s. This yields, by writing sums over products of higher order Bessel
function symbolically,

∑∏
Ikl

(. . .),

|P (Ii1 < u, . . . , Iik < u, Ij1 < u, . . . , Ijt < u)

− P (Ii1 < u, . . . , Iik < u) · P (Ij1 < u, . . . , Ijt < u)|

≤
∣∣∣∣∣
∫ u

0
. . .

∫ u

0
e− 1

2
∑k+t

i=1 λi Ii

( ∏
(i,j),(k+t

2 ) terms

I0(μij

√
IiIj ) +

∑∏
Ikl

(. . .)

)
dI1 . . . dIk . . . dIt

−
∫ u

0
. . .

∫ u

0
e− 1

2
∑k

i=1 λi Ii

( ∏
(i,j),(k

2) terms

I0(μij

√
IiIj ) +

∑∏
Ikl

(. . .)

)
dI1 . . . dIk

·
∫ u

0
. . .

∫ u

0
e− 1

2
∑t

i=1 λi Ii

( ∏
(i,j),(t

2) terms

I0(μij

√
IiIj ) +

∑∏
Ikl

(. . .)

)
dI1 . . . dIt

∣∣∣∣∣. (56)

Since ik + s < j1, the arguments μij

√
Ij Ij of the Bessel functions decrease, at IiIj fixed, as

|i − j |−α ≤ s−α . As
(
k+t

2

) = (
k

2

) + (
t

2

) + (
k

1

)(
t

1

)
i.e. correlations split into first block, second

block, and between blocks (separated by s) correlations:

≤
∣∣∣∣∣
∫ u

0
. . .

∫ u

0
dI1 . . . dIk . . . dIt . . .

·
( ∏

(i,j),(k
2) terms

I0(μij

√
IiIj ) +

∑∏
Ikl

(. . .)

)
e− 1

2
∑k

i=1 λi Ii

·
( ∏

(i,j),(t
2) terms

I0(μij

√
IiIj ) +

∑∏
Ikl

(. . .)

)
e− 1

2
∑t

i=1 λi Ii

·
( ∏

(i,j),(k
1)(

t
1) terms

I0(μij

√
IiIj ) +

∑∏
Ikl

(. . .)

)
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−
∫ u

0
. . .

∫ u

0
dI1 . . . dIke

− 1
2

∑k
i=1 λi Ii

( ∏
(i,j),(k

2) terms

I0(μij

√
IiIj ) +

∑∏
Ikl

(. . .)

)

·
∫ u

0
. . .

∫ u

0
dI1 . . . dIt e

− 1
2

∑t
i=1 λi Ii

( ∏
(i,j),(t

2) terms

I0(μij

√
IiIj ) +

∑∏
Ikl

(. . .)

)∣∣∣∣∣ (57)

where the term
∑∏

Ikl
(. . .) involves, again, the sum over products of Bessel functions Ii

of order higher than 0. This difference can be estimated as

≤
∫ u

0
. . .

∫ u

0
dI1 . . . dIk . . . dIt e

− 1
2

∑k
i=1 λi Ii e− 1

2
∑t

i=1 λi Ii

·
( ∏

(i,j),(k)(k−1)/2 terms

I0(μij

√
IiIj ) +

∑∏
Ikl

(. . .)

)

·
( ∏

(i,j),(t)(t−1)/2 terms

I0(μij

√
IiIj ) +

∑∏
Ikl

(. . .)

)

·
∣∣∣∣

∏
(i,j),kt terms

I0(μij

√
IiIj ) +

∑∏
Ikl

(. . .) − 1

∣∣∣∣. (58)

Since in the last product only block-block correlations between blocks separated by s are
involved, we have μij ≤ s−α and I0(μij

√
IiIj ) ≤ I0(u/sα). We choose the sequence un as

un = logn and sn such that sn/n → 0 an n → ∞. We then find I0(u/sα) → 1, for α > 0, as
n → ∞ and

∑∏
Ikl

→ 0 as n → ∞, where we have used that for z small I0(z)− 1 ∼ z2/4
and In(z) ∼ (z/2)nΓ (n + 1).

Appendix B: Proof of Condition 2

Let n = NM , with N ∈ N
∗, M ∈ N

∗. The condition for the “non-clustering” property for the
sequence I1, . . . , In reads:

lim sup
N→∞

N

N∑
j=2

P (I1 > uNM, Ij > uNM) = o

(
1

M

)
(59)

as M → ∞. We proceed in analyzing the non-clustering property.

lim sup
N→∞

N

N∑
j=2

P (I1 > uNM, Ij > uNM)

= lim sup
N→∞

N

N∑
j=2

∫ ∞

uNM

∫ ∞

uNM

1

2
e

− 1
2

(I1+Ij )

1−μ2
1j I0

(
μ1j

1 − μ2
1j

√
I1Ij

)
dI1dIj . (60)

The coefficient μ1j is the correlation coefficient between P1 and Pj . We split the sum in
two parts: the first one, on the terms involving the points sufficiently close to P1 to have
a significant correlation with it, and the other, say starting from an index j̄ , for which the
correlation with P1 can be estimated as to be smaller than 1/sα .
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In the first sum we use the expansion for z large: I0(z) = ez√
2πz

(1 + 1
8z

+ O( 1
z2 )). In the

second one, we use the expansion for z small: I0(z) = 1 + z2

4 + O(z4).
By denoting the integral kernel as

K(I1, Ij ) = e
− 1

2
(I1+Ij )

1−μ2
1j I0

(
μ1j

1 − μ2
1j

√
I1Ij

)
,

we have

N

N∑
j=2

∫ ∞

uNM

∫ ∞

uNM

K(I1, Ij )dI1dIj

= N

j̄∑
j=2

∫ ∞

uNM

∫ ∞

uNM

K(I1, Ij )dI1dIj +
N∑

j=j̄

∫ ∞

uNM

∫ ∞

uNM

K(I1, Ij )dI1dIj .

For a first estimate, let us consider the second sum

N

N∑
j=j̄

∫ ∞

uNM

∫ ∞

uNM

e
− 1

2
(I1+Ij )

1−μ2
1j

(
1 + O

((
μ1j

1 − μ2
1j

)2

I1Ij

))
dI1dIj

≤ N

N∑
j=j̄

e
− 1

2
(uNM +uNM )

1−μ2
1j 2(1 − μ2

1j )
[
1 + μ2

1j

(
uNM + 2(1 − μ2

1j )
)]

. (61)

B.1 Non-clustering on a Long Range

For a long-range correlation between points, we use that μ1j ≤ |1 − j |−α . Therefore, re-
calling that uNM = 2 log(NM) and writing μ0 = max{j>j̄}μ1j the inequality can further
simplified by

≤ N

N∑
j=j̄

e
−uNM

1−μ2 2(1 − μ2)
[
1 + |1 − j |−2α

(
uNM + 2(1 − μ2)

)]

≤ c

M

2
1−μ2

0

(
N2

N

2
1−μ2

0

+ N

N

2
1−μ2

0

N∑
j=j̄

1

j 2α
log(NM)2

)

≤ c

M

2
1−μ2

0

(
N2

N
2

1−μ0

+ N

N
2

1−μ0

log(NM)2

N2α−1

)
= o

(
1

M

)
(62)

as N → ∞, provided that α > 0 (see below the discussion on the decay of correlations).

B.2 Non-clustering in the Vicinity of a Speckle Maximum

Let us now concentrate on the first sum:

N

j̄∑
j=2

∫ ∞

uNM

∫ ∞

uNM

e
− 1

2
(I1+Ij )

1−μ2
1j I0

(
μ1j

1 − μ2
1j

√
I1Ij

)
dI1dIj (63)
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where we take j̄ ≤ M , saying that it is the number of indices for which correlation cannot
be neglected.

For values of μ1j close to unity the integral kernel, defined above by K(I1, Ij ) simplifies
considerably due to 1 − μ2

j � 1 such that the sum in expression (63) hence reads

K(I1, Ij ) ≤
exp{− 1

2

I1+Ij −2μj

√
I1Ij

1−μ2 }√
2πμj

1−μ2
j

√
I1Ij

(
1 + O

(
1 − μ2

j

μ
√

I1Ij

))
. (64)

Using the inequality
√

I 1

√
I j ≤ 1

2 (I1 + Ij ) this simplifies expression (63) to

≤ N

j̄∑
j=2

√
1 − μ2

j (1 + μj)
2

√
2πμjuNM

e
− uNM

1+μj ≤ N

j̄∑
j=2

√
1 − μ2

j (1 + μj)
2

√
4πμj log(NM)

N

μj −1
1+μj M

−2
1+μj (65)

the latter with uNM = 2 log(NM). Now we write μ1j = μj = 1 − j 2/k2 with j ≤ j̄ , for
which the delimiting correlation is denoted by μ̄ = 1 − j̄ 2/k2 (for instance of the order
of 1/2). The parabolic dependence of μ on the distance, represented by j/k is typical for
any valid speckle correlation function close to μ = 1. The procedure applied here, although
being one-dimensional, is applicable to each direction because of the parabolic behaviour in
any direction close to μ = 1. Anisotropy [18] is unimportant because each dimension can
be normalized by its characteristic (correlation) length. The sum hence reads

≤ 1√
4π log(NM)

j̄∑
j=2

√
j 2/k2√

1 − j 2/k2

(2 − j 2/k2)2

M(NM)
j2/k2

2−j2/k2

. (66)

The latter expression is a Riemann sum and can be replaced sufficiently well by an integral

≤ 1√
4π log(NM)

1

M
k

∫ √
μ̄

ξ=0
dξ 2 (2 − ξ 2)2√

1 − ξ 2
(NM)

− ξ2

2−ξ2 . (67)

The integral itself yields a weak dependence (NM)γ (μ̄) of NM with an exponent depending
on μ̄<

∼ 0.2 typically γ (μ̄ = 0.5) � 0.1, such that the inequality yields eventually

≤ k

2M
√

π logNM
(NM)γ (μ̄) ≤ 1

M1+ε
. (68)

The criterion for non-clustering cannot be fulfilled if the left-hand-side does not converge
such that 0 < ε < 1 can be found. This final expression has to be evaluated, first, for the
upper limit of the k value, being the number of grid points in one direction over a typical
correlation length rc of the speckle correlation function, thus kmax = rc/Δx which is as well
kmax = rcnx/Lx for a mesh of nx grid points over the box length Lx . For a symmetric mesh,
for instance, the total number of grid points is ngrid = nd

x in dimension d (d = 2 for 2D
and d = 3 for 3D geometry). The generalisation to d = 2 and d = 3 is justified, as already
mentioned above, by the fact that we can assume isotropy in the vicinity of the speckle
peak because of the parabolic behaviour around this point (with characteristic lengths in
each direction). Normalizing the directions with respect to their characteristic length, we
can express the specific volume of a speckle to a typical length rd

c , such that the number of
speckles in the box hence nsp � (L/rc)

d , results in kmax = (ngrid/nsp)
1/d .
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In a similar way we can define k in general for a number of points NM < ngrid, namely
k = (NM/nsp)

1/d . This helps to evaluate the above expression for a valid criterion (68) on
the non-clustering property. With the above dependence of k on the number of points NM

reads

(NM)1/d−γ (μ̄)

2
√

π logNM
≤ n

1/d
sp

Mε
.

The criterion is easily fulfilled for nsp > NM .
Leadbetter [28] has developed a criterion that allows to determine the parameter θ of

the Gumbel law. The validity of isotropy in the vicinity of the speckles allows furthermore
the consideration of a single θ value (see [18]). The first approximation, that consists in
neglecting the exceedences higher than of the order of two, yields the expression

k

2
√

π logNM
(NM)γ (μ̄) − (1 − θ) = 0. (69)

If the non-clustering condition is fulfilled, this leads to a θ value of θ = 1, otherwise θ can
roughly be estimated to decrease towards small positive values like

θ � 1 − k
(NM)−γ (μ̄)

2
√

π logNM
� 1 − (NM)1/d−γ (μ̄)

2(nsp)1/d
√

π logNM
. (70)

The value of θ shifts, see (14) and (16), by log θ , the center of the Gumbel distribution in the
intensity. Leadbetter shows [28] that a more precise analysis of θ developed as a function
of the order of exceedences can be performed. We have determined θ from numerical sim-
ulations as a function of NM that (1) shows a good agreement with the above expression
for 4nsp > NM > nsp. For the concrete case discussed in Sect. 2.3, the value of NM ≡ n

denotes the total number of points considered for the sequence I1, . . . , In, and N the number
of speckles nsp. Hence, it follows θNM/nsp = θM = const for NM � nsp and with θ = 1
for NM < nsp, being the non-clustering case.

Appendix C: Proof for the Mixing Condition

In the following we present a sketch of the proof for the mixing condition. We have

|P (Ii1 < ui1 , . . . , Iik < uik , Ij1 < uj1 , . . . , Ijt < ujt )

− P (Ii1 < ui1 , . . . , Iik < uik )P (Ij1 < uj1 , . . . , Ijt < ujt )|. (71)

Similar to the result from Appendix A, but for different integral bounds, we proceed

≤
∣∣∣∣∣
∫ ui1

0
. . .

∫ ujt

0
e− 1

2
∑k+t

i=1 λi Ii

( ∏
(i,j),(k+t

2 ) terms

I0(μij

√
IiIj ) +

∑∏
Ikl

)
dI1 . . . dIk . . . dIt

−
∫ ui1

0
. . .

∫ uik

0
e− 1

2
∑k

i=1 λi Ii

( ∏
(i,j),(k

2) terms

I0(μij

√
IiIj ) +

∑∏
Ikl

)
dI1 . . . dIk

·
∫ uj1

0
. . .

∫ ujk

0
e− 1

2
∑t

i=1 λi Ii

( ∏
(i,j),(t

2) terms

I0(μij

√
IiIj ) +

∑∏
Ikl

)
dI1 . . . dIt

∣∣∣∣∣ (72)
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recalling that since ik + n < j1, the μij decrease as |i − j |−α ≤ 1/sa , a = 1.
Again with

(
k+t

2

) = (
k

2

) + (
t

2

) + (
k

1

)(
t

1

)
the correlations split into first block, second block,

and between blocks (separated by s) correlations, so that the difference can be estimated as

≤
∫ ∞

0
. . .

∫ ∞

0
dI1 . . . dIk . . . dIt e

− 1
2

∑k
i=1 λi Ii e− 1

2
∑t

i=1 λi Ii

·
( ∏

(i,j),(k)(k−1)/2 terms

I0(μij

√
IiIj ) +

∑∏
Ikl

(. . .)

)

·
( ∏

(i,j),(t)(t−1)/2 terms

I0(μij

√
IiIj ) +

∑∏
Ikl

(. . .)

)

·
∣∣∣∣

∏
(i,j),kt terms

I0(μij

√
IiIj ) +

∑∏
Ikl

(. . .) − 1

∣∣∣∣ (73)

since the difference
∏

(i,j),kt terms I0(μij

√
IiIj ) + ∑∏

Ikl
(. . .) − 1 is positive. The slowest

term in the difference in (73) is given by the product of I0’s; so we are led to compute
integrals of the form:

for n = 2 it is k = 1 and t = 1:
∫ ∞

0

∫ ∞

0
e−(aI1+bI2)

(
I0(α

√
I1I2) − 1

)
dI1dI2

for n = 3, take e.g. k = 2 and t = 1:

∫ ∞

0

∫ ∞

0

∫ ∞

0
e−(aI1+bI2+cI3)I0(α

√
I1I2)

(
I0(β

√
I1I3)I0(γ

√
I2I3) − 1

)
dI1dI2dI3.

Using that
∫ ∞

0 x exp(−ax2)I0(αx)I0(βx)dx = (1/2a) exp{(α2 + β2)/4a}I0(−αβ/2a) and
that

∫ ∞
0 x exp{−ax}I0(αx)dx = (a2 − α2)−1/2 yields for n = 2

∫ ∞

0

∫ ∞

0
e−(aI1+bI2)

(
I0(α

√
I1I2) − 1

)
dI1dI2 = 1

b

1

a − (α2/2b)
− 1

ab

so that the difference goes to zero as α2 that is, as the square of the correlation μ.
For n = 3 we have chosen k = 2 and t = 1 so that I1 and I2 are in the same group, and

I3 in the other that is I1 and I2 are “near” each of the other, and both “far” from I3, so that
here we wish to estimate the decay to zero as γ and β go to zero. This yields

∫ ∞

0
dI2

∫ ∞

0
dI3 e−(bI2+cI3)I0(γ

√
I2I3)

∫ ∞

0
e−(aI1)I0(α

√
I1I2)I0(β

√
I1I3)dI1

= 1

ab − α2/4

(√
c − β2/4a −

(
a

γ 2 + (α2β2/4a2)

4ab − α2

)2

− 4a2
α2β2γ 2

(4ab − α2)2

)−1/2

and ∫ ∞

0
dI2dI3

∫ ∞

0
e−(bI2+cI3)

∫ ∞

0
e−(aI1)I0(α

√
I1I2)dI1 = 1

ac

1

b − α2/4a
.
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The difference for n = 3 goes to zero as −1 + [1 + γ 2 + β2]−1/2, that is as the square
of correlations μ, hence, the mixing property is satisfied with α(n) → 0 as n → ∞: the
coefficients α(n) decrease to 0 as μ2

1n, that is as ( 1
n
)a (a = 2), see Sect. 5.

For n larger, we have to compute integrals of the form

∫ ∞

0
te−at2 I0(αt)I0(βt)I0(γ t)dt

where three (or more) Bessel function of the same order are involved.
Making use of the formula [35]

J0(αt)J0(βt) = (1/π)

∫ π

0
J0(t

√
α2 + β2 − 2αβ cosφ)dφ

we can evaluate the integrals:

∫ ∞

0
te−at2 I0(αt)I0(βt)I0(γ t)dt

= e
α2+β2+γ 2

4a2

2πa2

∫ π

0
e

αβγ cosφ

4a2 I0

(
α
√

β2 + γ 2 − 2βγ cosφ

2a2

)
dφ (74)

by making use, via induction, of the known formula [35] for the integral containing the
product of two Bessel functions

∫ ∞
0 te−at2 I0(αt)I0(βt)dt = (1/2a2) exp{(α2 + β2)/4a2}×

I0(αβ/2a2).
Using now the Graf formula I0(

√
β2 + γ 2 − 2βγ cosφ) = ∑∞

0 εk Ik(β)Ik(γ ) cos kφ and∫ π

0 ea cosφ coskφdφ = π Ik(a) we find the nice formula:

∫ ∞

0
te−at2 I0(αt)I0(βt)I0(γ t)dt = 1

2a2
e

α2+β2+γ 2

4a2

∞∑
k=0

Ik

(
αγ

2a2

)
Ik

(
αβ

2a2

)
Ik

(
βγ

2a2

)
. (75)

This is an inductive procedure that allows theoretically to perform integrals of the type
containing products of Bessel functions; in practice, formulas at higher order become too
complicated. Nevertheless is clear from this result that the successive formulae contain prod-
ucts of Bessel functions of higher order, whose decay to zero is faster with larger order, so
that the speed of convergence is given by the first terms containing the 0-th order Bessel
function, the argument of which argument contains the correlation coefficient μij between
two points, hence the decay goes as the square of μij .
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